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Robots as Computationally Limited Autonomous Agents

• A straightforward approach is to plug and play publicly-available Deep Neural 
Networks (DNNs) for object detection (OD)

• Running deep learning-based models on mobile robots is prohibitive
• Low-powered and affordable hardware configuration

• Limited computational capabilities affect real-time inference

• Energy-preservation constraints for long-term autonomy

Cloud Robotics
• Offloading computationally intensive inference tasks to third-party cloud 

services running DNNs, here called TaskNets[2]

• Domain shift degrades the TaskNet’s performance

• Classical domain adaptation[3] cannot be applied

• The TaskNet is inaccessible

• Train, deploy, and maintain a TaskNet for each robot is expensive

Preliminaries

Object Detection over the Cloud

• The robot sends remotely its perceptions 
(RBG images)

• The TaskNet predicts a dense set of object 
proposals ෠𝑌 = { ො𝑦}

• Bounding boxes are expressed as ො𝑦 =
Ƹ𝑐𝑥 , Ƹ𝑐𝑦 , ෝ𝑤, ෠ℎ, Ƹ𝑐, hot( ො𝑜)

• Ƹ𝑐𝑥 , Ƹ𝑐𝑦 are the center coordinates

• ෝ𝑤, ෠ℎ are width and height

• Ƹ𝑐, hot( ො𝑜) are the confidence and the one-hot 
encoded label

• ෠𝑌 is filtered using Non-Maximum 
Suppression (NMS)

• The remaining bounding boxes are 
sent back to the robot

Approach

Downstream Proposal Refinement

• The robot receives ෠𝑌 and selects the 
first 𝑘 most confident, obtaining ෠𝑌𝑘

• It refines their parameters with a 
lightweight DNN which performs 3 
corrective actions

• ෠𝑌𝑘 is then filtered with NMS
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INTUITION
The robot can fix

the TaskNet’s errors
for its environment

ISSUES

•NMS produces several errors

• Each robot incurs in a different domain shift

BENEFITS

•Horizontally-scalable adaptation

• Computationally affordable by robots

R2SNet Architecture 

• Bounding boxes are expressed with two different descriptors:

• Bounding-box Descriptors (BD): parameters of proposals received by the TaskNet

• Image Descriptors (ID): visual features extracted by the Background Feature Network (BFNet)

• BD and ID are processed by two symmetric networks inspired by PointNet[4]

• Local features (L) are extracted through shared MLPs and Global features (G) with a max operator

• Local and global features are then concatenated and mixed with shared MLPs in an embedding LG

• The mixed features are fed into 3 heads to perform relabeling, rescoring, and suppression

BFNet Architecture 

• Produces an image feature map IF with dimension [𝑊, 𝐻, 8]

• Extracts a multi-scale embeddings using a residual network

• The last 3 levels are processed by 3 parallel convolutional networks and top-down aggregated

• Produces a binary masks M for each proposal 

• 4 MLPs with fixed weights and biases

• Each MLP extracts a partial mask for each coordinate that are aggregated with an and operator 

• Masks are multiplied with IF and then maxpooled obtaining visual features for each proposals 
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• We validate R2SNet in each environment of 𝐷𝑟𝑒𝑎𝑙:

• Varying the number of training data (25%, 50%, 75%)

• Varying the number of proposals (10, 30, 50, 100)

• Testing has been performed using the remaining 25% 

• We perform an ablation study of the 3 heads

M
et

ri
cs • Mean Average Prevision (mAP)

• The rates of true positive (TP), false positive (FP), 
and background false detections (BFD)[1]
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• 𝐷𝐷𝐷2: a real dataset (called 
DeepDoors2) with ≈ 3𝑘 examples

• 𝐷𝐺: photorealistic dataset obtained with 
Gibson simulator (≈ 5𝑘 images)

• 𝐷𝑟𝑒𝑎𝑙: a dataset collected with our robot 
in 4 environments (≈ 2𝑘 images)[1]

Train the TaskNet
(Faster R-CNN)

Fine-tune
R2SNet
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More proposals enhance
domain adaptation 

Env. 1 Env. 2 Env. 3 Env. 4 Mean

Mean

Performance increases 
even with a few data

More proposals produce
higher TP but also BFD 
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Evaluation All heads contribute
to domain adaptation

Ablation study

R2SNet
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Introduction

Context

• We consider a fleet of robots deployed 
in different indoor environments that 
need to perform object detection

• This ability is essential to carry out high-
level tasks useful in several contexts[1]
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