

R2SNet: Scalable Domain Adaptation for Object Detection in Cloud-Based Robotic Ecosystems via Proposal Refinement

N. ALBERTO BORGHESE

nicola.basilico@unimi.it

NICOLA BASILICO

MICHELE ANTONAZZI michele.antonazzi@unimi.it

MATTEO LUPERTO matteo.luperto@unimi.it

alberto.borghese@unimi.it

Department of Computer Science, University of Milan

Introduction

Context

- We consider a fleet of robots deployed in different indoor environments that need to perform object detection
- This ability is essential to carry out highlevel tasks useful in several contexts^[1]

Service Robots

Assistive Robots

Robots as Computationally Limited Autonomous Agents

- A straightforward approach is to plug and play publicly-available Deep Neural Networks (DNNs) for object detection (OD)
- Running deep learning-based models on mobile robots is prohibitive
 - Low-powered and affordable hardware configuration
 - Limited computational capabilities affect real-time inference
 - Energy-preservation constraints for long-term autonomy

Cloud Robotics

- Offloading computationally intensive inference tasks to third-party cloud services running DNNs, here called TaskNets^[2]
- Domain shift degrades the TaskNet's performance
- Classical domain adaptation^[3] cannot be applied
 - The TaskNet is inaccessible
 - Train, deploy, and maintain a TaskNet for each robot is expensive

Performance increases

even with a few data

mAP

 $R2S_{75}^{10}$

 $R2S_{75}^{30}$

 $R2S_{75}^{50}$

Mean

 $mAP \uparrow TP \uparrow FP \downarrow BFD \downarrow$

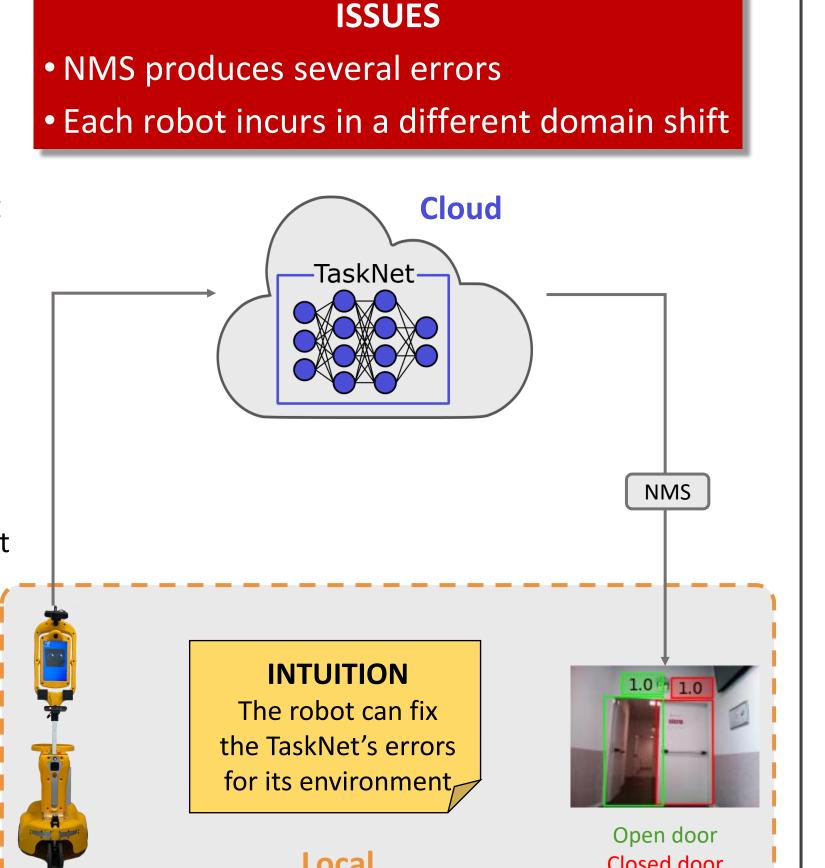
46% 5%

TaskNet

Preliminaries

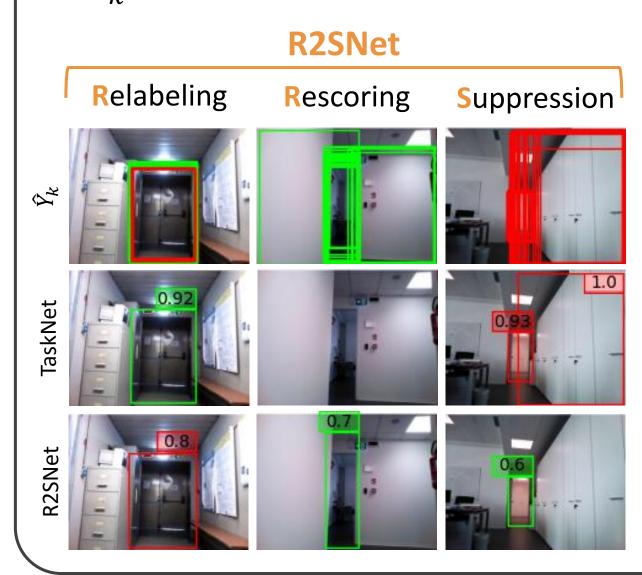
Object Detection over the Cloud

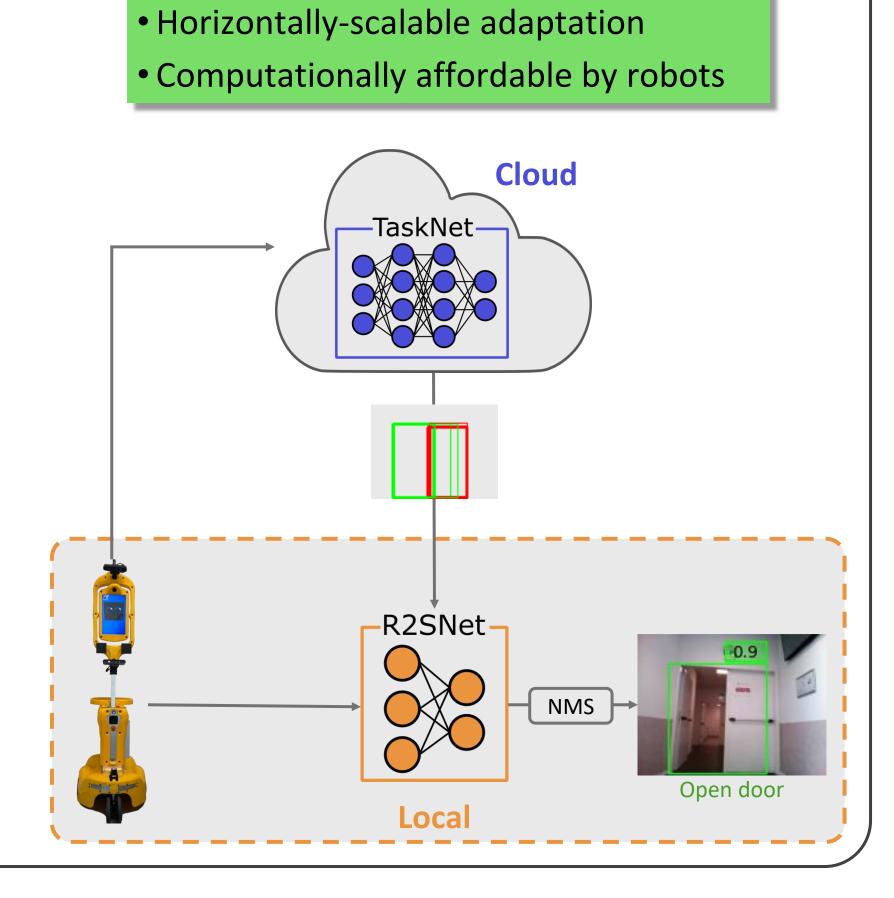
- The robot sends remotely its perceptions (RBG images)
- The TaskNet predicts a dense set of object proposals $\hat{Y} = \{\hat{y}\}$
- Bounding boxes are expressed as $\hat{y} =$ $[\hat{c}_{x}, \hat{c}_{y}, \widehat{w}, \widehat{h}, \widehat{c}, hot(\widehat{o})]$
 - \hat{c}_{χ} , \hat{c}_{γ} are the center coordinates
 - \widehat{w} , \widehat{h} are width and height
 - \hat{c} , $hot(\hat{o})$ are the confidence and the one-hot encoded label
- \widehat{Y} is filtered using Non-Maximum Suppression (NMS)
- The remaining bounding boxes are sent back to the robot



Downstream Proposal Refinement

- The robot receives \widehat{Y} and selects the first k most confident, obtaining \widehat{Y}_k
- It refines their parameters with a lightweight DNN which performs 3 corrective actions
- \widehat{Y}_k is then filtered with NMS



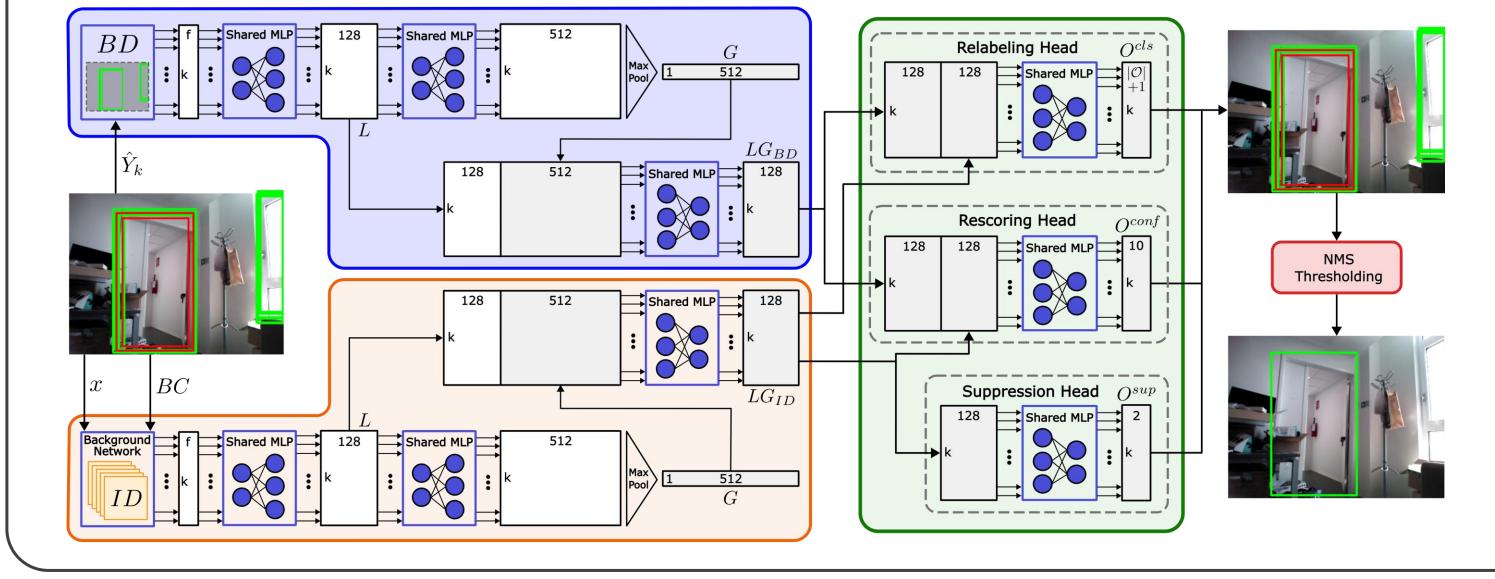


BENEFITS

Architecture

R2SNet Architecture

- Bounding boxes are expressed with two different descriptors:
 - Bounding-box Descriptors (BD): parameters of proposals received by the TaskNet
 - Image Descriptors (ID): visual features extracted by the Background Feature Network (BFNet)
- BD and ID are processed by two symmetric networks inspired by PointNet^[4]
 - Local features (L) are extracted through shared MLPs and Global features (G) with a max operator
 - Local and global features are then concatenated and mixed with shared MLPs in an embedding LG
- The mixed features are fed into 3 heads to perform relabeling, rescoring, and suppression



Exp.

TaskNet

 $R2S_{25}^{30}$

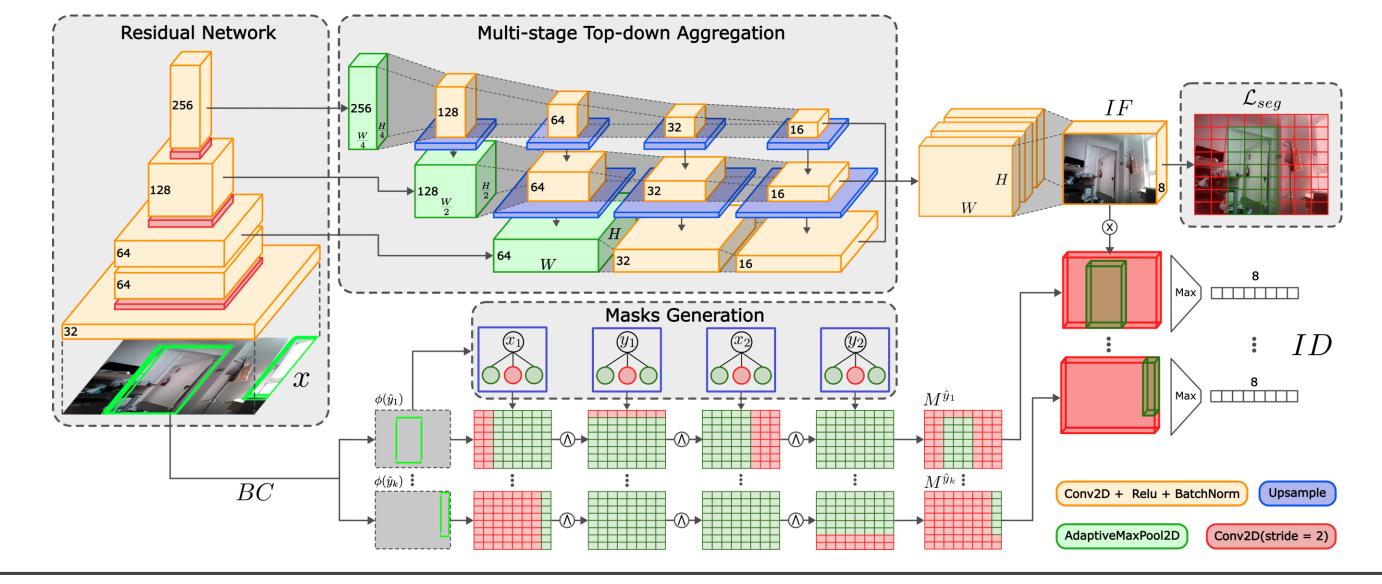
 $R2S_{50}^{30}$

 $R2S_{75}^{30}$

More proposals enhance

BFNet Architecture

- Produces an image feature map IF with dimension [W, H, 8]
 - Extracts a multi-scale embeddings using a residual network
 - The last 3 levels are processed by 3 parallel convolutional networks and top-down aggregated
- Produces a binary masks M for each proposal
 - 4 MLPs with fixed weights and biases
 - Each MLP extracts a partial mask for each coordinate that are aggregated with an and operator
- Masks are multiplied with IF and then maxpooled obtaining visual features for each proposals



Evaluation

- D_{DD2} : a real dataset (called DeepDoors2) with $\approx 3k$ examples
- D_G : photorealistic dataset obtained with

Gibson simulator ($\approx 5k$ images)

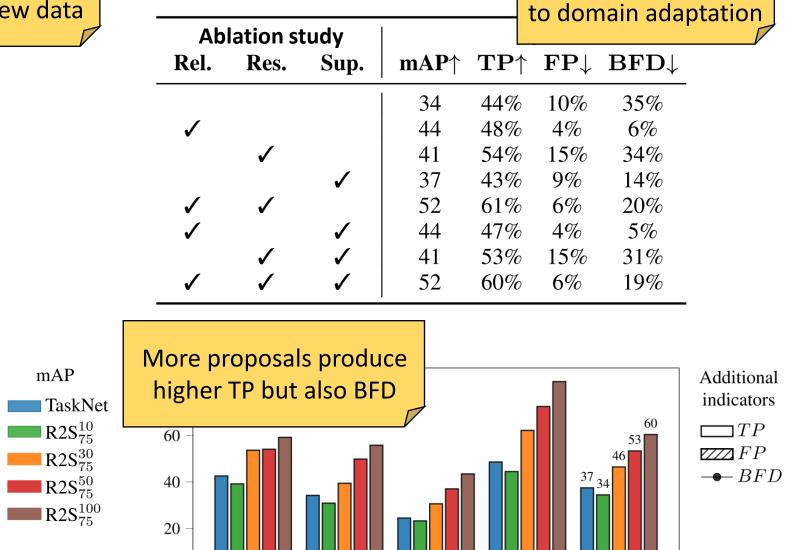
- D_{real} : a dataset collected with our robot
- in 4 environments ($\approx 2k$ images)^[1]
- Mean Average Prevision (mAP)
- The rates of true positive (TP), false positive (FP), and background false detections (BFD)[1]
- Testing has been performed using the remaining 25%
- We perform an ablation study of the 3 heads
- domain adaptation We validate R2SNet in each environment of D_{real} : • Varying the number of training data (25%, 50%, 75%) • Varying the number of proposals (10, 30, 50, 100) Env. 2 Env. 3 Env. 4

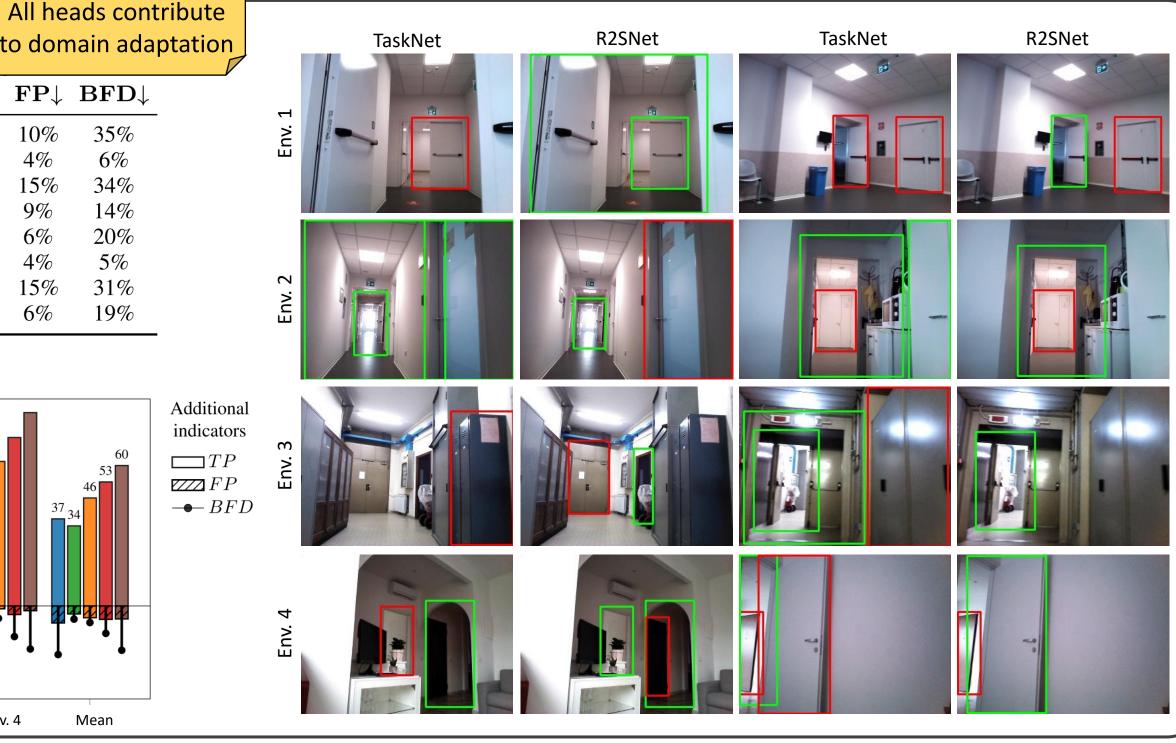
Train the TaskNet

(Faster R-CNN)

Fine-tune

R2SNet





References [1] Antonazzi, Michele, et al. "Development and Adaptation of Robotic Vision in the Real-World: the Challenge of Door Detection," 2024. [3] Oza, Poojan, et al. "Unsupervised domain adaptation of object detectors: A survey," In IEEE Trans. Pattern Anal. 2023. [2] Hu, Guoqiang, et al., "Cloud robotics: architecture, challenges and applications." in IEEE Network 26.3. 2012

Env. 3

Env. 1

Env. 2